

OMX Series Matrix Switch

Installation & Operating Guide

The OMX Series Switch is a non-blocking, MEMS-based MxN all-optical matrix switch that seamlessly
routes light from any input port to any output port.

Applications

These devices are pivotal in various applications, such as system and network testbed
reconfiguration, where they streamline the process of switching and connecting test setups without
manual intervention. They are widely used for centralized test equipment sharing and automated
network testing, significantly improving operational efficiency in lab environments. In
telecommunications, they support automated regression testing and advanced scenarios like OTN,
DWDM and FTTx/PON system testing, making them an indispensable tool in both R&D and QA
settings.

Key Features

• Compact Form Factor: 1RU upto 4RU depending on port count and connectors
• All new models come with connectors featuring internal shutters, which eliminate the

need for dust caps.
• Low Insertion Loss: 2.5 dB typical for a 64 port model (OMX64)
• Ultra-Fast Response: MEMS switch have a typical response time of 5 ms.
• Protocol and Speed Agnostic: Compatible with Ethernet, Fibre Channel, OTN, and more at

any speed (1G–100G+).
• Bi-Directional: Supports optical signals in both directions.
• Telcordia Compliance: Meets the highest reliability standards.
• Remote Management: Web-based interface over HTTPS and CLI via SSH.
• Automation Support: Integrate with REST APIs or legacy CLI-based tools.

MatrixPro Switches are available in the following models, tailored to different port configurations:

OMX16 (8x8 Optical Matrix Switch)
OMX32 (16x16 Optical Matrix Switch)
OMX64 (32x32 Optical Matrix Switch)
OMX128 (64x64 Optical Matrix Switch)
OMX256 (128x128 Optical Matrix Switch)

OMX16 8x8 Non-blocking Matrix Switch

The above is an 8x8 matrix switch housed in a 1RU unit, featuring 8 simplex input ports and 8 simplex
output ports. Any input port can be connected to any output port using the GUI, CLI, or REST APIs.

OMX Matrix Switch

Configuring OMX series switch

The OMX Series Switch provides two management connectivity options: a serial UART port (micro-USB)
and an Ethernet port (RJ45). The serial port is primarily used in special situations, such as debugging
network connectivity when the switch is not reachable via Ethernet.

To use the USB console port, you will need a USB-A to micro-USB cable. Use a terminal login application
such as PuTTY (Windows), screen (Linux), or an equivalent tool. Configure the console port with the
following settings:

Baud rate: 115200
Data bits: 8
Parity: None
Stop bits: 1 (8-N-1)
Ensure you are using the correct COM port number. For example, on Windows, you can find the COM
port number through Device Manager.

Default Account settings

Login: admin
Password: admin

The default root password is "osctl." However, we recommend using "sudo" to gain root access instead
of directly using the root account. Additionally, ensure you change the root password immediately after
the initial setup.

Configuring Static IP

Before configuring IP please make sure the date and time settings are correct. You can use Linux CLI
timedatectl or our GUI/Webpage 'clock' page to set the time. If you use the GUI/Webpage you will have to
uncheck NTP and set the date and time.

The management module runs an embedded version of Linux, so anyone familiar with Linux will find it
easy to use. But we provide a CLI command called ‘osctl’ which can be used to configure and use most
of the features. So, to configure a static IP address you can use following syntax.

 # osctl -i 192.168.1.10 -m 255.255.255.0 -g 192.168.1.1

‘osctl -?’ shows detailed osctl command options with examples.

The above command configures IP address of OMX series switch as 192.168.1.10 with network mask
255.255.255.0 and gateway & DNS as 192.168.1.1. Once the IP is configured from a PC or a Laptop
using Ethernet or serial port, you can then connect OMX series switch to your network and access it
using “telnet” or “ssh”.

Configuring Dynamic IP

If you have a DHCP server running on your network and you may want to dynamically assign an
available IP address to OMX series switch by using following option.

osctl -D

Make sure you know the assigned IP address to login using “telnet” or “ssh”.

Configuring Hostname

You can also change the hostname of OMX series switch switch using “osctl”.

 # osctl –h OMX8-SW-1

The above command changes hostname of OMX series switch to OMX series switch-SW-1.

Configuring DNS/Nameserver

To configure a DNS or Nameserver, you can use “-n” option of osctl.

osctl –n 192.168.1.11

Configuring Syslog Server

To send system generated events to an external syslog server, use “–S” option of osctl. You have to
specify the address of the syslog server which will receive these event logs. (Note: this option only
available in software version 2.0 and above).

osctl –S 192.168.1.200

Version Info

The following command shows hardware and software versions and serial number of the switch.

osctl –V

Other Administrative commands

Most of other administrative functions can be done using standard Linux commands. For example, to
change the password use “passwd” command from the Linux prompt and to add new user use “useradd”
command. You have to be sudo user in order to add a new user.

To simply the operation, all functions are provided in a single command called “osctl”. osctl provides
3 major functions

1. Network & Host configuration (allowed only as “root” user)
2. Switch Control & Status
3. Port group Management

The following are the commands used to configure network.

1. To configure static IP
 # osctl -i <ip> -m <mask> -g <gw>

2. To use DHCP (dynamic IP)
 # osctl -D

3. To configure hostname alone
 # osctl -h <hostname>

4. To configure a DNS or Nameserver, you can use “-n” option of osctl.
osctl –n <dns_server_ip>

5. To configure syslog server to receive OMX series switch’s events
osctl –S <syslog_server_ip>

For details on above commands refer to above installation section.

In order to cross connect an input port to an output port or a group of ports, the following command
can be used.

$ osctl -p <input_port#> <output_port#> [-t <secs>]

Note that the “{}” (braces) groups options and “|” is equivalent to “or”. If the options are in square brackets “[]” then it is optional.

For example:
 $ osctl -p 1 4

 switch input port 1 to output port 4. Note, there should be space between p,1 and 4.
 $ osctl -p 2 1 -t 120

 switch input port 2 to output port 1 after 120 secs (delayed switching)

Operation

Network & Host configuration

Switch Control

Following command shows the status of ports, which input port is mapped to which output port or
status of ports in a pre-defined group.

$ osctl -s [<input_port#>]

For example:

$ osctl -s

 shows all ports status as follows. It shows which input port connected to which output and
also shows the active group.

 All Ports Status
========================
 In Port | Out Port
========================
 1 | 4
 2 | 1
 3 | 5
 4 | 12
 5 | 14
 6 | 2
 7 | 6
 8 | 7
 9 | 9
 10 | 11
 11 | 10
 12 | 8
 13 | 13
 14 | 3
 15 | 16
 16 | 15

 Active Group: config1

$ osctl -s 2

 shows which output port the port2 is cross connected to.
 $ 1

Switch Status

The OMX series Non-Blocking Matrix Switch front-end GUI provides an intuitive and interactive
interface for managing input-output connections seamlessly. The main display consists of a dynamic
matrix table, where rows represent input ports, and columns represent output ports. To establish a
connection, simply click on the cell corresponding to the desired input-output pair. The system ensures
non-blocking operation by automatically swapping or reassigning affected connections to maintain the
integrity of the matrix configuration. Connection states are visually represented with distinct color
codes for clarity. Any changes made are immediately reflected in the table and synchronized with the
backend system. Additionally, the GUI offers real-time feedback messages centered below the matrix
to confirm actions or notify users of potential issues, ensuring a user-friendly and efficient operation.

Web interface

Setup page

The setup page allows you to change Hostname, Static IP address configuration and Dynamic IP
(DHCP). Initially, it shows the current set values. Then, you can change them by clicking on the
corresponding field. Note that changing the IP, Gateway, Mask, or DHCP setting will make the switch
reboot!

Device Info page

The device Info page shows hardware and software information such as model and version.

Maintenance page

This page can be used to "Reset/Reboot" the system or calibrate the VOA. The Calibration of the VOA
requires a laser source and an optical meter. Please get in touch with support@echola.com for
calibration details.

mailto:support@echola.com

Using RESTful API

Our REST APIs accept JSON request bodies, returns JSON-encoded responses, and use standard HTTP
response codes, authentication (basic), and verbs (GET and PUT only). The following table
summarizes the available APIs.

Method URI Action Request [body] data
GET https://[host_ip]/api/ports Get all ports state
GET https://[host_ip]/api/ports/[port_#] Get specific port's state or output port
PUT https://[host_ip]/api/ports/[port_#] On| Off a specific port (FC/VFC Series) {"state":<on | off>}
PUT https://[host_ip]/api/ports/[port_#] Connect an input to an output (OMX) {"output_port":<port#>}
GET https://[host_ip]/api/voa Get all ports attenuation (VFC/VFX)
GET https://[host_ip]/api/voa/[port_#] Get specific port's attenuation (VFC/VFX)
PUT https://[host_ip]/api/voa/[port_#] Set attenuation of a specific port (VFC/VFX) {"attenuation":<data>}
GET https://[host_ip]/api/voadb Get all ports attenuation in dB (VFC/VFX)
GET https://[host_ip]/api/voadb/[port_#] Get specific port attenuation (VFC/VFX)
PUT https://[host_ip]/api/voadb/[port_#] Set attenuation of specific port (VFC/VFX) {"attenuation":<data>}

Examples:

1. The following example shows how the connection between input port 1 and output port 3
is made using a 'curl' command.

$ curl -X PUT \
 -u admin:admin \
 -H "Content-Type: application/json" \
 -d '{"output_port": "3"}' \
 -k https://192.168.1.120/api/ports/1

2. Following command returns the state of port 2 (state here is ‘output_port#’)

$ curl -u admin:admin \
 -H "Content-Type: application/json" \
 -k https://192.168.1.120/api/ports/2

responds with {"state":"5"}

Automating Echola's Optical Switches

Please note, it is not a good practice to use the password on the command line directly, as
shown below. Alternatively, you could use curl's netrc option "-n <user_password_file>" instead
of "-u" option and protect the password file with the appropriate permissions.

Using the osctl CLI

The VFC1011 configuration and monitoring can be automated using the osctl command, which is
available on the switch and can be used with external terminal automation tools such as Tcl/Expect.
Unlike the RESTful API, which supports limited configurations, the osctl command provides access to
all configurations, including network settings.

Running Scripts from Unix/Linux Systems

If you want to run scripts from a Unix/Linux-based machine, you may already have the necessary
tools installed. To check, type expect at the Unix/Linux prompt. If it is not installed, use the package
installation tool specific to your system to install it. For example, on Fedora-based systems, you can
run:

$ yum install tcl expect

on Debain/Ubuntu

$ sudo apt update
$ sudo apt install tcl expect

This will install both Tcl and Expect.

Running Scripts from Windows

For Windows-based systems, you can install the free community version of ActiveTcl from
ActiveState. After installation, ensure you install "Expect" using the following command:

$ teacup install Expect

Additionally, you need to enable the "Telnet" client on Windows before running any scripts. To
enable Telnet, follow these steps:

1. Go to Start.
2. Open the Control Panel.
3. Navigate to Programs and Features.
4. Click on Turn Windows features on or off.
5. Check the box for Telnet Client and click OK.

After enabling Telnet, you can verify it by starting Telnet via Command Prompt.

Sample Tcl/Expect script Using 'osctl' CLI

The following sample script logs into the VFC1011 switch, issues a switch command, verifies if the
command was successful, and then terminates the Telnet session. The script takes the port number
and the desired state (on or off) as command-line arguments.

To use this script:

1. Copy and paste the script into any text editor.
2. Save it as rosctl.
3. Run the script using the following syntax:

$ rosctl -p <input_port#> <output_port#>

For instance, to connect input port 2 to output port 6:

$ rosctl -p 2 6

Important:

• Ensure the first line of the script specifies the correct path to Expect (#!/usr/bin/expect) for
Unix/Linux systems.

• For Windows, uncomment the exec and package commands as instructed in the script.
• All comments beginning with # provide detailed explanations of the script's actions.

This approach ensures efficient and automated configuration of the VFC1011 switch.

#!/usr/bin/expect

This script switches the given port and verifies if the port is switched
from a remote machine
Command Usage: rosctl -p <port#> on|off

For windows uncomment following
exec tclsh "$0" ${1+"$@"}
package require Expect
Check number of arguments passed to this command if < 3 then spit out
error & exit

 if { $argc < 3 } {
 puts "Usage: rosctl -p <input_port#> <output_port#>\n"
 exit 1
 }

Set telnet host, username, password and other parameters, modify these to
reflect your setup

 set hostname "192.168.2.20"
 set username "osctl"
 set password "osctl"
 set prompt "osctl@.*\$"
 set input_port [lindex $argv 1]
 set output_port [lindex $argv 2]
 set commandcontrol "osctl -p $input_port $output_port"
 set commandstatus "osctl -s $port"

Display info.

 puts "Connecting to $hostname."

Connect to the telnet server using the "spawn" command.

 spawn telnet $hostname
 #spawn C:\Putty\putty.exe -telnet $hostname

Wait for a login prompt.

 expect -re "(Name|login|Login|Username).*:.*" {

 # Login prompt received. Send user name to VFC1011/VFC1011.

 send "$username\r"

 } eof {

 # No login prompt received. Display an error.

 puts "could not connect\n"
 }

Wait for a password prompt from the Unix server.

 expect "Password:" {

 # Password prompt received. Send the password.

 send "$password\r"
 }

Wait for the switch prompt.

 expect -re $prompt {

 # Issue osctl command to switch given port

 send "$commandcontrol\r"
 }

Wait for the switch prompt again to check status.

 expect -re $prompt {

 # Issue osctl command to check status

 send "$commandstatus\r"
 }

Discard echoed command - we need only the status

 expect "$commandstatus\r"

Discard unwanted prompt as well

 expect -re "(.*)$prompt"

 #Debug
 #puts "\nGOT*****$expect_out(buffer)***************\n"
 #puts "\n GOTS ####$expect_out(1,string)#####\n"

Save remaining to buffer 'data'

 set data $expect_out(1,string)
 puts "Output Port is set to $data"

Terminate telnet

send "exit\r"

OMX Series Switch Specifications

 Min Typical Max

Operation Wavelength 750 nm 1270~1630 nm 2400 nm

Insertion Loss (SM) 1.5 dB 2.2 dB

Insertion Loss (MM) 1.8 dB 2.8 dB

Crosstalk, On/Off Ratio 45 dB 70 dB

Extinction Ratio (PM Fiber) 18 dB 23 dB

Switch Speed 5 ms 20 ms

Durability 10 9 cycles
Polarization Dependent Loss 0.04 dB 0.2 dB

Wavelength Dependence Loss 0.1 dB 0.3 dB

Return Loss 50 dB
Repeatability 0.05 dB 0.1 dB

Operating Temperature 23 °F 150 °F

Storage Temperature -40 °F 185 °F

Power Consumption 50 W

Optical Power Handling 500 mW
 Enclosure Dimension 1RU/2RU/4RU

 This device runs the Debian distribution of the Linux OS.

 All group information is stored in a hidden XML database file. If this file becomes corrupt, the

system will attempt to recover by copying the backup database file. If this occurs, a warning
message will be displayed. However, it is not guaranteed that all group information will be
restored correctly. In such cases, you may need to recreate any missing groups manually after
restoration. You can also manually initiate the recovery process by using the command osctl -R.

 Some customers have encountered issues with running out of space due to error messages

accumulating over time in the /var/log directory. You can recover this space by using the
command osctl -R and entering y when prompted.

If you have any technical questions and need help you can send email to support@echola.com. You
can also download latest documents and software from our website www.echola.com.

Troubleshooting Info

Contact Info

mailto:support@echola.com
http://www.echola.com/optical

	Setup page
	Device Info page
	Maintenance page
	Using RESTful API
	Using the osctl CLI
	Running Scripts from Unix/Linux Systems
	Running Scripts from Windows

	Sample Tcl/Expect script Using 'osctl' CLI

